ALL-ATTITUDE MOUNTS

All-attitude mounts are general purpose isolators for applications on aircraft, ground vehicles or racking systems. Equipment can be mounted in any orientation (attitude) with equal performance. All attitude isolators offer high frequency shock and vibration protection.

Features:
- Compact, lightweight Design
- 1:1 Axial to Radial spring rate
- All-attitude design
- Isolates under sustained loading up to 5G
- Efficiently isolates vibration in all directions
- Survives 30G 11ms 1/.2 sine shock input at rated load

All-attitude mounts are available in three sizes:
- 706 size: 5 load ratings from 1 to 7 lb
- 705 size: 3 load ratings from 10 to 20 lb
- 707 size: 3 load ratings from 35 to 80 lb

Applicable Military Specifications:
- MIL-E-5400
- MIL-STD-810
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

VIB705 ALL-ATTITUDE MOUNT

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +300 F
Maximum Transmissibility at Resonance: 4.0
Load Capacity: 10 – 20 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight: 2.8 oz.
Materials:
- Cup and Base Plate: 302 or 304 Stainless Steel, Passivated per ASTM A967
- Core: Aluminum alloy 6061-T6, chem. Film per MIL-C-5541 Class 1A
- Eyelets: Brass, Nickel plated per ASTM B689

Performance Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Maximum Static Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>lb/in</td>
</tr>
<tr>
<td>VIB3705-1</td>
<td>10</td>
<td>22</td>
<td>494 (89)</td>
<td>494 (89)</td>
</tr>
<tr>
<td>VIB3705-2</td>
<td>15</td>
<td>741 (133)</td>
<td>741 (133)</td>
<td></td>
</tr>
<tr>
<td>VIB3705-3</td>
<td>20</td>
<td>988 (177)</td>
<td>988 (177)</td>
<td></td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_a/P_r} \]

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

Typical Load vs. Deflection

Transmissibility vs. Frequency

\[\text{Transmissibility vs. Frequency} \]

\[\text{Typical Load vs. Deflection} \]

\[\text{Performance Characteristics} \]
VIB706 ALL-ATTITUDE MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +300 F
Maximum Transmissibility at Resonance: 4.0
Load Capacity: 1 – 5 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight: 1.1 oz.
Materials: Cup and Base Plate: Aluminum alloy 5052-H32
Core: Aluminum alloy 6061-T6, chem. Film per MIL-C-5541 Class 1A
Eyelets: Brass, Nickel plated per ASTM B689

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Maximum Static Load lbs</th>
<th>Axial Natural Frequency Hz</th>
<th>Dynamic Axial Spring Rate lb/in</th>
<th>Dynamic Radial Spring Rate lb/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB3706-1</td>
<td>1</td>
<td>23</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>VIB3706-2</td>
<td>2</td>
<td>108</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>VIB3706-3</td>
<td>3</td>
<td>162</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>VIB3706-5</td>
<td>5</td>
<td>270</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>VIB3706-7</td>
<td>7</td>
<td>378</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>

Performance Characteristics

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \sqrt{\frac{P_r}{P_a}} \]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

Transmissibility vs. Frequency

Typical Load vs. Deflection
Solutions for shock, vibration, noise, and sealing challenges

VIB707 ALL-ATTITUDE MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +300 F
Maximum Transmissibility at Resonance: 4.0
Load Capacity: 10 – 20 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight: 2.8 oz.
Materials: Cup and Base Plate: Cold Rolled Steel, Zinc Plated per ASTM B633
Core: Aluminum alloy 6061-T6, chem. Film per MIL-C-5541 Class 1A
Eyelets: Brass, Nickel plated per ASTM B689

Performance Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Maximum Static Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>N/mm</td>
</tr>
<tr>
<td>VIB3707-1</td>
<td>35</td>
<td>17</td>
<td>1032</td>
<td>181</td>
</tr>
<tr>
<td>VIB3707-2</td>
<td>50</td>
<td></td>
<td>1475</td>
<td>259</td>
</tr>
<tr>
<td>VIB3707-3</td>
<td>80</td>
<td></td>
<td>2360</td>
<td>414</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:

\(F_n \): Natural Frequency at actual load (Hz)
\(F_{nn} \): Nominal Natural Frequency (Hz)
\(P_r \): Rated load
\(P_a \): Actual load

Typical Load vs. Deflection

Transmissibility vs. Frequency