RING & BUSHING MOUNTS

All-elastomer ring and bushing isolators are versatile, low cost mounts that can satisfy many vibration control problems. They are lightweight, rugged and can be integrated directly into structural components. Multiple isolators can be stacked in parallel for greater load carry capability or in series to increase deflection capability. Standard material offerings are natural rubber, other materials are available upon request.

Features:

- Compact, lightweight Design
- Fail-safe design when used with snubbing washers
- Efficiently isolates vibration in all directions

Low profile mounts are available in four sizes with load ratings from 4 to 350 lbs.

- 1401 Size: Load ratings from 4 to 12 lb
- 1402 Size: Load ratings from 20 to 35 lb
- 1403 Size: Load ratings from 35 to 75 lb
- 1404 Size: Load ratings from 120 to 350 lb
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

VIB1401 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -40 to +180 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 6 – 12 lb
Axial-Radial Stiffness Ratio: 1:0.4
Part Weight: Less than 1 oz
Materials: Elastomer: Natural Rubber

All-elastomer ring & bushings are intended to be mounted in an axial orientation.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Min Load</th>
<th>Max Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB1401-1R/1B</td>
<td>1</td>
<td>4</td>
<td>18</td>
<td>132</td>
<td>53</td>
</tr>
<tr>
<td>VIB1401-2R/2B</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>198</td>
<td>79</td>
</tr>
<tr>
<td>VIB1401-3R/3B</td>
<td>3</td>
<td>8</td>
<td>18</td>
<td>265</td>
<td>106</td>
</tr>
<tr>
<td>VIB1401-4R/4B</td>
<td>5</td>
<td>12</td>
<td>18</td>
<td>397</td>
<td>159</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:

Fn: Natural Frequency at actual load (Hz)
Fnn: Nominal Natural Frequency (Hz)
Pr: Rated load
Pa: Actual load

TYPICAL INSTALLATION

A = 0.23
B = 0.23
VIB1402 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -40 to +180 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 20 – 35 lb
Axial-Radial Stiffness Ratio: 1:0.4
Part Weight: Less than 1 oz
Materials: Elastomer: Natural Rubber

All-elastomer ring & bushings are intended to be mounted in an axial orientation.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Min Load</th>
<th>Max Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>N/mm</td>
</tr>
<tr>
<td>VIB1402-1R/</td>
<td>6</td>
<td>20</td>
<td>14</td>
<td>400</td>
<td>70</td>
</tr>
<tr>
<td>VIB1402-1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB1402-2R/</td>
<td>7</td>
<td>23</td>
<td>14</td>
<td>460</td>
<td>80</td>
</tr>
<tr>
<td>VIB1402-2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB1402-3R/</td>
<td>10</td>
<td>25</td>
<td>19</td>
<td>920</td>
<td>158</td>
</tr>
<tr>
<td>VIB1402-3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB1402-4R/</td>
<td>15</td>
<td>35</td>
<td></td>
<td>1290</td>
<td>226</td>
</tr>
<tr>
<td>VIB1402-4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \cdot \sqrt{P_r/P_a} \]

Where:
Fn: Natural Frequency at actual load (Hz)
Fnn: Nominal Natural Frequency (Hz)
Pr: Rated load
Pa: Actual load

TYPICAL INSTALLATION
Solutions for shock, vibration, noise, and sealing challenges

VIB1403 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -40 to +180 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 35 – 75 lb
Axial-Radial Stiffness Ratio: 1:0.4
Part Weight: Less than 1 oz
Materials: Elastomer: Natural Rubber

All-elastomer ring & bushings are intended to be mounted in an axial orientation.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Min Load</th>
<th>Max Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB1403-1R/</td>
<td>10</td>
<td>35</td>
<td>12</td>
<td>514</td>
<td>90</td>
</tr>
<tr>
<td>VIB1403-1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB1403-2R/</td>
<td>20</td>
<td>50</td>
<td>12</td>
<td>735</td>
<td>129</td>
</tr>
<tr>
<td>VIB1403-2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB1403-3R/</td>
<td>30</td>
<td>60</td>
<td>12</td>
<td>882</td>
<td>154</td>
</tr>
<tr>
<td>VIB1403-3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB1403-4R/</td>
<td>40</td>
<td>75</td>
<td>14</td>
<td>1500</td>
<td>262</td>
</tr>
<tr>
<td>VIB1403-4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{\frac{P_r}{P_a}} \]

Where:
Fn: Natural Frequency at actual load (Hz)
Fnn: Nominal Natural Frequency (Hz)
P: Rated load
Pa: Actual load

TYPICAL INSTALLATION

A = 0.33
B = 0.45
VIB1404 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -40 to +180 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 120 – 350 lb
Axial-Radial Stiffness Ratio: 1:0.3
Part Weight: 3.4 oz
Materials: Elastomer: Natural Rubber

All-elastomer ring & bushings are intended to be mounted in an axial orientation.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Min Load</th>
<th>Max Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>N/mm</td>
</tr>
<tr>
<td>VIB1404-1R/ VIB1404-1B</td>
<td>60</td>
<td>120</td>
<td>7</td>
<td>600</td>
<td>105</td>
</tr>
<tr>
<td>VIB1404-2R/ VIB1404-2B</td>
<td>110</td>
<td>160</td>
<td>8</td>
<td>800</td>
<td>140</td>
</tr>
<tr>
<td>VIB1404-3R/ VIB1404-3B</td>
<td>135</td>
<td>250</td>
<td>8</td>
<td>1630</td>
<td>285</td>
</tr>
<tr>
<td>VIB1404-4R/ VIB1404-4B</td>
<td>160</td>
<td>350</td>
<td>8</td>
<td>2285</td>
<td>400</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:
Fn: Natural Frequency at actual load (Hz)
Fnn: Nominal Natural Frequency (Hz)
Pr: Rated load
Pa: Actual load

TYPICAL INSTALLATION

A = 1.25
B = 0.75