LOW PROFILE MOUNTS

Low profile mounts offer a compact, standardized solution to a multitude of vibration control problems. They are lightweight and rugged to satisfy challenging problems and minimize sway space requirements. They are suitable for aerospace, defense, medical and electronics applications. Low profile mounts are available with a mounting plate, in a platform base or as individual grommets.

Features:

- Compact, lightweight Design
- 1:1 Axial to Radial spring rate
- All attitude design
- Fail-safe design
- Efficiently isolates vibration in all directions
- Survives 30G 11ms 1/2 sine shock input at rated load

Low profile mounts are available in two sizes with load ratings from 1 to 50 lbs.

- 3203 Size: Load ratings from 4.5 to 10 lb
- 3204 Size: Load ratings from 15 to 50 lb

Applicable Military Specifications

- MIL-E-5400
- MIL-STD-810
VIB203 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +300 F
Maximum Transmissibility at Resonance: 4.0
Load Capacity: 4.5 – 10 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight: 0.01 lb (Grommet Only)
0.03 lb (Plate Style Mount)
0.05 lb (Platform Base)

Materials:
Plate: Aluminum alloy, chromated MIL-C-5541, class 1A
Core & washers Steel, zinc plated ASTM B633

<table>
<thead>
<tr>
<th>Load Rating</th>
<th>Grommet Only</th>
<th>Plate Style</th>
<th>w/ Pedestal Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>VIB3203-1</td>
<td>VIB3103-1</td>
<td>VIB3709-1</td>
</tr>
<tr>
<td>7.0</td>
<td>VIB3203-2</td>
<td>VIB3103-2</td>
<td>VIB3709-2</td>
</tr>
<tr>
<td>10.0</td>
<td>VIB3203-3</td>
<td>VIB3103-3</td>
<td>VIB3709-3</td>
</tr>
</tbody>
</table>

*for threaded versions add T to end (ex: VIB3103-1T)
*Special versions available on request

<table>
<thead>
<tr>
<th>P/N</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hz</td>
<td>lb/in</td>
<td>N/mm</td>
</tr>
<tr>
<td>-1</td>
<td>23</td>
<td>245</td>
<td>44</td>
</tr>
<tr>
<td>-2</td>
<td>380</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>-3</td>
<td>540</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:
F_n = F_nn*√P_r/P_a
Where:
F_n: Natural Frequency at actual load (Hz)
F_nn: Nominal Natural Frequency (Hz)
P_r: Rated load
P_a: Actual load

Part Numbers

VIB203 VIBRATION MOUNTS

Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY
VIB206 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature:
- -67 to +300 F (Silicone Versions)
- -20 to +200 F (Neoprene Versions)

Maximum Transmissibility at Resonance:
- 4.0 (Silicone)
- 10.0 (Neoprene)

Load Capacity: 15 – 50 lb

Axial-Radial Stiffness Ratio: 1:0.8

Part Weight:
- 0.6 oz (Grommet Only)
- 2.5 oz (Plate Style Mount)

Materials:
- Plate, Core & washers Steel, zinc plated ASTM B633
- Elastomer: Silicone or Neoprene

### Load Rating Stationary	Load Rating Mobile	Silicone Plate Style Mount	Neoprene Plate Style Mount	Silicone Grommet Only	Neoprene Grommet Only
15 | 4 | 7 | VIB3104-1 | VIB2104-1 | VIB3206-1 | VIB2206-1
25 | 8 | 11 | VIB3104-2 | VIB2104-2 | VIB3206-2 | VIB2206-2
35 | 12 | 17 | VIB3104-3 | VIB2104-3 | VIB3206-3 | VIB2206-3
50 | 18 | 30 | VIB3104-4 | VIB2104-4 | VIB3206-4 | VIB2206-4

How to order:
- For .250-20 UNC-2B Tapped versions add T to the end of part number
- Use X for Hex end of tapped core on opposite side of 1.5 DIA ring
- Use Y for Hex end of tapped core on same side as 1.5 DIA ring

Load (lb) vs. Deflection (inch)

Axial Natural Frequency

<table>
<thead>
<tr>
<th>P/N</th>
<th>Dynamic Axial</th>
<th>Dynamic Radial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load Rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary</td>
<td>Mobile</td>
</tr>
<tr>
<td></td>
<td>Hz</td>
<td>N/mm</td>
</tr>
<tr>
<td>-1</td>
<td>15</td>
<td>344</td>
</tr>
<tr>
<td>-2</td>
<td>738</td>
<td>130</td>
</tr>
<tr>
<td>-3</td>
<td>1035</td>
<td>181</td>
</tr>
<tr>
<td>-4</td>
<td>1475</td>
<td>259</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load