Ring and bushing isolators are versatile, low cost mounts that can satisfy many vibration control problems. They are rugged, low-cost isolators easily installed. Ring and bushing mounts are ideal for mounting engines, generators, pumps or other rotating equipment in harsh off-road or industrial applications. They are offered standard in neoprene rubber, other materials are available upon request.

Features:

- Compact, lightweight Design
- Fail-safe design when used with snubbing washers
- Efficiently isolates vibration in all directions

Low profile mounts are available in five sizes with load ratings from 40 to 4,560 lbs.

- 2405 Size: Load ratings from 40 to 300 lb
- 2406 Size: Load ratings from 130 to 630 lb
- 2407 Size: Load ratings from 210 to 1330 lb
- 2408 Size: Load ratings from 270 to 2100 lb
- 2409 Size: Load ratings from 1140 to 4560 lb
Solutions for shock, vibration, noise, and sealing challenges

VIB2405 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +220 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 40 – 300 lb
Axial-Radial Stiffness Ratio: 1:1.5
Part Weight:
Materials: Elastomer: Neoprene
 Tube: DOM Tubing, ASTM A513, type V, class 1026 or equivalent

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Max Axial Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Max Radial Load</th>
<th>Radial Natural Frequency</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N/mm</td>
<td></td>
<td></td>
<td>N/mm</td>
</tr>
<tr>
<td>VIB2405-1</td>
<td>40</td>
<td>15</td>
<td>1000</td>
<td>20</td>
<td>2000</td>
<td>350</td>
</tr>
<tr>
<td>VIB2405-2</td>
<td>90</td>
<td></td>
<td>2000</td>
<td>30</td>
<td>3100</td>
<td>544</td>
</tr>
<tr>
<td>VIB2405-3</td>
<td>140</td>
<td></td>
<td>3000</td>
<td>40</td>
<td>4200</td>
<td>737</td>
</tr>
<tr>
<td>VIB2405-4</td>
<td>250</td>
<td></td>
<td>5000</td>
<td>50</td>
<td>5200</td>
<td>912</td>
</tr>
<tr>
<td>VIB2405-5</td>
<td>300</td>
<td></td>
<td>7500</td>
<td>60</td>
<td>6200</td>
<td>1090</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:
\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]
Where:
Fn: Natural Frequency at actual load (Hz)
Fnn: Nominal Natural Frequency (Hz)
Pr: Rated load
Pa: Actual load

TYPICAL INSTALLATION

Ø A = 0.75
R = 0.04
T = 0.375 (Support Structure Thickness)
VIB2406 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +220 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 130 – 630 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight:
Materials: Elastomer: Neoprene
Tube: DOM Tubing, ASTM A513, type V, class 1026 or equivalent

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Max Axial Load</th>
<th>Axial Natural Frequency</th>
<th>Max Radial Load</th>
<th>Radial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in, N/mm</td>
<td>lb/in, N/mm</td>
</tr>
<tr>
<td>VIB2406-1</td>
<td>130</td>
<td>12</td>
<td>1860</td>
<td>20</td>
<td>326, 50</td>
<td>2100, 368</td>
</tr>
<tr>
<td>VIB2406-2</td>
<td>175</td>
<td>12</td>
<td>2500</td>
<td>20</td>
<td>438, 65</td>
<td>2800, 491</td>
</tr>
<tr>
<td>VIB2406-3</td>
<td>240</td>
<td>12</td>
<td>3400</td>
<td>20</td>
<td>596, 90</td>
<td>4000, 700</td>
</tr>
<tr>
<td>VIB2406-4</td>
<td>380</td>
<td>12</td>
<td>5400</td>
<td>20</td>
<td>947, 165</td>
<td>7200, 1263</td>
</tr>
<tr>
<td>VIB2406-5</td>
<td>630</td>
<td>12</td>
<td>9000</td>
<td>20</td>
<td>1579, 280</td>
<td>12100, 2120</td>
</tr>
</tbody>
</table>

*T in at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

TYPICAL INSTALLATION

\[\emptyset A = 1.25 \]
\[R = 0.06 \]
\[T = 0.563 \) (Support Structure Thickness)
Solutions for shock, vibration, noise, and sealing challenges

VIB2407 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +220°F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 210 – 1330 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight:
Materials: Elastomer: Neoprene
Tube: DOM Tubing, ASTM A513, type V, class 1026 or equivalent

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Max Axial Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Max Radial Load</th>
<th>Radial Natural Frequency</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>N/mm</td>
<td>lbs</td>
<td>Hz</td>
</tr>
<tr>
<td>VIB2407-1</td>
<td>210</td>
<td>2500</td>
<td>439</td>
<td>90</td>
<td>2900</td>
<td>510</td>
</tr>
<tr>
<td>VIB2407-2</td>
<td>350</td>
<td>4100</td>
<td>720</td>
<td>140</td>
<td>4700</td>
<td>825</td>
</tr>
<tr>
<td>VIB2407-3</td>
<td>490</td>
<td>5800</td>
<td>1018</td>
<td>225</td>
<td>7500</td>
<td>1316</td>
</tr>
<tr>
<td>VIB2407-4</td>
<td>860</td>
<td>10100</td>
<td>1772</td>
<td>385</td>
<td>12800</td>
<td>2250</td>
</tr>
<tr>
<td>VIB2407-5</td>
<td>1330</td>
<td>15600</td>
<td>2737</td>
<td>690</td>
<td>22900</td>
<td>4020</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \sqrt{P_r/P_a} \]

Where:
Fn: Natural Frequency at actual load (Hz)
Fnn: Nominal Natural Frequency (Hz)
Pr: Rated load
Pa: Actual load

TYPICAL INSTALLATION

Ø A = 1.50
R = 0.09
T = 0.875 (Support Structure Thickness)
VIB2408 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +220 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 270 – 2100 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight:

Materials:
- Elastomer: Neoprene
- Tube: DOM Tubing, ASTM A513, type V, class 1026 or equivalent

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Max Axial Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Max Radial Load</th>
<th>Radial Natural Frequency</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB2408-1</td>
<td>270</td>
<td>10</td>
<td>3000</td>
<td>135</td>
<td>3200</td>
<td>560</td>
</tr>
<tr>
<td>VIB2408-2</td>
<td>510</td>
<td>10</td>
<td>5700</td>
<td>230</td>
<td>5500</td>
<td>965</td>
</tr>
<tr>
<td>VIB2408-3</td>
<td>770</td>
<td>10</td>
<td>8500</td>
<td>345</td>
<td>8200</td>
<td>1440</td>
</tr>
<tr>
<td>VIB2408-4</td>
<td>1170</td>
<td>10</td>
<td>13000</td>
<td>590</td>
<td>13900</td>
<td>2440</td>
</tr>
<tr>
<td>VIB2408-5</td>
<td>2100</td>
<td>10</td>
<td>23300</td>
<td>975</td>
<td>23200</td>
<td>4070</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

TYPICAL INSTALLATION

\[\Phi A = 2.25 \]
\[R = 0.12 \]
\[T = 1.125 \text{ (Support Structure Thickness)} \]
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

VIB2409 VIBRATION MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +220 °F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 1140 – 4560 lb
Axial-Radial Stiffness Ratio: 2:1
Part Weight:
Materials: Elastomer: Neoprene
Tube: DOM Tubing, ASTM A513, type V, class 1026 or equivalent

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Max Axial Load</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Max Radial Load</th>
<th>Radial Natural Frequency</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB2409-1</td>
<td>1140</td>
<td>Hz</td>
<td>lb/in</td>
<td>11400</td>
<td>2000</td>
<td>240</td>
</tr>
<tr>
<td>VIB2409-2</td>
<td>1930</td>
<td>Hz</td>
<td>lb/in</td>
<td>19300</td>
<td>3386</td>
<td>340</td>
</tr>
<tr>
<td>VIB2409-3</td>
<td>2580</td>
<td>Hz</td>
<td>lb/in</td>
<td>25800</td>
<td>4526</td>
<td>610</td>
</tr>
<tr>
<td>VIB2409-4</td>
<td>3540</td>
<td>Hz</td>
<td>lb/in</td>
<td>35400</td>
<td>6210</td>
<td>890</td>
</tr>
<tr>
<td>VIB2409-5</td>
<td>4560</td>
<td>Hz</td>
<td>lb/in</td>
<td>45600</td>
<td>8000</td>
<td>1410</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:
F_n = F_{nn} \times \sqrt{P_r/P_a}

Where:
F_n: Natural Frequency at actual load (Hz)
F_{nn}: Nominal Natural Frequency (Hz)
P_r: Rated load
P_a: Actual load

TYPICAL INSTALLATION

Ø A = 2.50
R = 0.12
T = 1.250 (Support Structure Thickness)
SNUBBING WASHERS

PRODUCT SPECIFICATIONS

Material: Steel per ASTM A1008/A1011
Finish: Zinc plated per ASTM B633, Type II, Class FE/ZN 12

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B DIA</th>
<th>C DIA</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB2405</td>
<td>.090</td>
<td>1.56</td>
<td>.391</td>
<td>W10044-1</td>
</tr>
<tr>
<td>VIB2406</td>
<td>.134</td>
<td>2.13</td>
<td>.532</td>
<td>W10044-2</td>
</tr>
<tr>
<td>VIB2407</td>
<td>.188</td>
<td>2.81</td>
<td>.657</td>
<td>W10044-3</td>
</tr>
<tr>
<td>VIB2408</td>
<td>.250</td>
<td>3.88</td>
<td>.938</td>
<td>W10044-4</td>
</tr>
<tr>
<td>VIB2409</td>
<td>.375</td>
<td>5.25</td>
<td>1.063</td>
<td>W10044-5</td>
</tr>
</tbody>
</table>