“L” Type Spring mounts are compact fail-safe mounts specially designed for propeller driven aircraft. They are low frequency and very highly damped ideal for the isolation of sensitive equipment in rotary or propeller driven aircraft.

“L” Type spring mounts are intended for base mounting orientation only and will work at inclination angles up to 10°. They are fail-safe and capable of surviving a 30G 11ms half sine shock.

Features:
- Fail-safe
- Compact, lightweight Design
- 4:1 Axial to Radial spring rate
- Highly damped
- Very low radial spring rate

Cup style mounts are available in two sizes:
- 719 size: 7 load ratings from 2 to 40 lb
- 725 size: 7 load ratings from 0.50 to 10 lb

Applicable Specifications:
MIL-STD-810
MIL-STD-167
MIL-E-5400
MIL-C-172
VIB719 CUP MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +250°F
Maximum Transmissibility at Resonance: 2.5
Load Capacity: 2.0 – 40 lb
Part Weight: 3.6 oz.
Maximum Dynamic Input: 0.08 inch DA
Maximum Radial Travel: 0.286 inch
Materials & Finish:
- Cup: 5052 AL per QQ-A-250 Bright anodize per MIL-A-8625
- Base plate: 5052 AL per QQ-A-250 Clear anodize per MIL-A-8625
- Core: 6061 AL per QQ-A-225 Clear anodize per MIL-A-8625
- Grommet: EPDM

Performance Characteristics

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Load Rating (lbs)</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Hz</td>
<td>lb/in</td>
</tr>
<tr>
<td>VIB719-1</td>
<td>2.0</td>
<td>4.5</td>
<td>7</td>
<td>22.5</td>
</tr>
<tr>
<td>VIB719-2</td>
<td>3.0</td>
<td>6.0</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>VIB719-3</td>
<td>4.5</td>
<td>10</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>VIB719-4</td>
<td>6.25</td>
<td>12.5</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>VIB719-5</td>
<td>9.0</td>
<td>16</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>VIB719-6</td>
<td>10</td>
<td>20</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>VIB719-7</td>
<td>20</td>
<td>40</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:
\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]
Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

Variation

<table>
<thead>
<tr>
<th>Variation</th>
<th>Approx. Under Min Load</th>
<th>Maximum Extended</th>
<th>Minimum Compressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD</td>
<td>1.406</td>
<td>1.54</td>
<td>0.982</td>
</tr>
<tr>
<td>-L</td>
<td>1.562</td>
<td>1.706</td>
<td>1.148</td>
</tr>
</tbody>
</table>

Variation

<table>
<thead>
<tr>
<th>Variation</th>
<th>Thread ‘A’</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD</td>
<td>.250-20 UNC-2B x .375 Min Deep</td>
</tr>
<tr>
<td>-L</td>
<td>.250-20 UNC-2B x .562 Min Deep</td>
</tr>
<tr>
<td>-F</td>
<td>.250-28 UNF-2B x .375 Min Deep</td>
</tr>
<tr>
<td>-LF</td>
<td>.250-28 UNC-2B x .562 Min Deep</td>
</tr>
</tbody>
</table>
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

VIB725 CUP MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +250°F
Maximum Transmissibility at Resonance: 2.5
Load Capacity: 0.5 – 10 lb
Part Weight: 2 oz.
Maximum Dynamic Input: 0.08 inch DA
Maximum Radial Travel: 0.218 inch
Materials & Finish:
- Cup: 5052 AL per QQ-A-250
 Bright anodize per MIL-A-8625
- Base plate: 5052 AL per QQ-A-250
 Clear anodize per MIL-A-8625
- Core: 6061 AL per QQ-A-225
 Clear Anodize per MIL-A-8625
- Grommet: EPDM

Performance Characteristics

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Load Rating (lbs)</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Hz</td>
<td>lb/in</td>
</tr>
<tr>
<td>VIB725-1</td>
<td>0.25</td>
<td>0.50</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>VIB725-2</td>
<td>0.50</td>
<td>1.0</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>VIB725-3</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>VIB725-4</td>
<td>1.5</td>
<td>3.0</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>VIB725-5</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>VIB725-6</td>
<td>2.5</td>
<td>5.0</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>VIB725-7</td>
<td>5.0</td>
<td>10</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

Variation	Approx. Under Min Load	Maximum Extended	Minimum Compressed
STANDARD | 1.375 | 1.632 | 0.975 |
- L | 1.562 | 1.788 | 1.131 |

Variation	Thread ‘A’
STANDARD | .164-32 UNC-2B x .500 Min Deep |
- L | .164-32 UNC-2B x .500 Min Deep |