Bubble mounts are lightweight, general purpose vibration isolators for applications in electronics enclosures, industrial machinery or medical products. They are a low-cost, all elastomer solution for low and mid frequency noise and vibration applications.

Features:

- Compact, lightweight design
- All elastomer construction
- Wide load range
- Efficiently isolates vibration in all directions

Bubble mounts are available in four sizes:

- 3304 size: 3 load ratings from 0.5 to 2 lb
- 3305 size: 4 load ratings from 3.5 to 9 lb
- 3306 size: 4 load ratings from 3.5 to 9 lb
- 3707 size: 4 load ratings from 0.6 to 3 lb
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

BBUBBLE MOUNTS VIB3304 SERIES

PRODUCT SPECIFICATIONS

- Operating Temperature: -67 to +300 F
- Maximum Transmissibility at Resonance: 4.0
- Load Capacity: 0.5 – 2.0 lb
- Axial-Radial Stiffness Ratio: 3:1
- Part Weight: 0.1 oz.
- Materials: All Elastomer

Performance Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Static Load Range</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>N/mm</td>
<td></td>
</tr>
<tr>
<td>VIB3304-1</td>
<td>0.3—0.5</td>
<td>12</td>
<td>7.4</td>
<td>1.3</td>
<td>Red</td>
</tr>
<tr>
<td>VIB3304-2</td>
<td>0.5—1.0</td>
<td></td>
<td>14.7</td>
<td>2.6</td>
<td>Blue</td>
</tr>
<tr>
<td>VIB3304-3</td>
<td>1.0—2.0</td>
<td></td>
<td>29.4</td>
<td>5.2</td>
<td>Orange</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[
F_n = \frac{F_{nn}}{\sqrt{P_a/P_r}}
\]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[
F_n = \frac{F_{nn}}{\sqrt{P_a/P_r}}
\]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

www.greenerubber.com
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

BBBLE MOUNTS VIB2305 SERIES

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +200 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 3.5 – 9 lb
Axial-Radial Stiffness Ratio: 4:1
Part Weight: 0.5 oz.
Materials: All Elastomer

Performance Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Static Load Range</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB2305-1</td>
<td>1.3—3.5</td>
<td>51</td>
<td>9.0</td>
<td>12.8</td>
<td>Yellow & White</td>
</tr>
<tr>
<td>VIB2305-2</td>
<td>2.3—4.5</td>
<td>66</td>
<td>11.7</td>
<td>16.5</td>
<td>Purple & White</td>
</tr>
<tr>
<td>VIB2305-3</td>
<td>3.0—6.0</td>
<td>88</td>
<td>15.6</td>
<td>22</td>
<td>Green & White</td>
</tr>
<tr>
<td>VIB2305-4</td>
<td>4.5—9.0</td>
<td>132</td>
<td>23.5</td>
<td>33</td>
<td>Blue & White</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

*Part Number: VIB2305
Static Load Range: lbs
Axial Natural Frequency: Hz
Dynamic Axial Spring Rate: lb/in, N/mm
Dynamic Radial Spring Rate: lb/in, N/mm
Color Code: Yellow & White, Purple & White, Green & White, Blue & White
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

BBBLE MOUNTS VIB2306 SERIES

PRODUCT SPECIFICATIONS

- Operating Temperature: -20 to +200 F
- Maximum Transmissibility at Resonance: 10.0
- Load Capacity: 3.5 – 9 lb
- Axial-Radial Stiffness Ratio: 4:1
- Part Weight: 0.5 oz.
- Materials: All Elastomer

Performance Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Static Load Range</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIB2306-1</td>
<td>1.3—3.5</td>
<td>12</td>
<td>51</td>
<td>9.0</td>
<td>Yellow & White</td>
</tr>
<tr>
<td>VIB2306-2</td>
<td>2.3—4.5</td>
<td>12</td>
<td>66</td>
<td>11.7</td>
<td>Purple & White</td>
</tr>
<tr>
<td>VIB2306-3</td>
<td>3.0—6.0</td>
<td>12</td>
<td>88</td>
<td>15.6</td>
<td>Green & White</td>
</tr>
<tr>
<td>VIB2306-4</td>
<td>4.5—9.0</td>
<td>12</td>
<td>132</td>
<td>23.5</td>
<td>Blue & White</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use: \(F_n = F_{nn}\sqrt{P_a/P_r} \)

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

*Fn at max rated load and .036 inch DA input.
To correct for loads lower than rated load use: \(F_n = F_{nn}\sqrt{P_a/P_r} \)

Where:
- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

www.greenerubber.com
Solutions for shock, vibration, noise, and sealing challenges

GREENE RUBBER COMPANY

WEB MOUNTS VIB2307 SERIES

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +200 F
Maximum Transmissibility at Resonance: 10.0
Load Capacity: 3.5 – 9 lb
Axial-Radial Stiffness Ratio: 4:1
Part Weight: 0.5 oz.
Materials: All Elastomer

Performance Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Static Load Range</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Axial Spring Rate</th>
<th>Dynamic Radial Spring Rate</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs</td>
<td>Hz</td>
<td>lb/in</td>
<td>lb/in</td>
<td></td>
</tr>
<tr>
<td>VIB2307-1</td>
<td>0.4—0.7</td>
<td>10</td>
<td>7.1</td>
<td>1.3</td>
<td>Orange & White</td>
</tr>
<tr>
<td>VIB2307-2</td>
<td>0.6—1.2</td>
<td></td>
<td>12.2</td>
<td>2.2</td>
<td>Red & White</td>
</tr>
<tr>
<td>VIB2307-3</td>
<td>0.8—1.6</td>
<td></td>
<td>16.3</td>
<td>2.9</td>
<td>Yellow & White</td>
</tr>
<tr>
<td>VIB2307-4</td>
<td>1.3—2.6</td>
<td></td>
<td>26.5</td>
<td>4.7</td>
<td>Green & White</td>
</tr>
<tr>
<td>VIB2307-5</td>
<td>1.6—3.2</td>
<td></td>
<td>32.6</td>
<td>5.8</td>
<td>Blue & White</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

www.greenerubber.com