Solutions for shock, vibration, noise, and sealing challenges

HIGH DEFLECTION MOUNTS UAV3001

PRODUCT SPECIFICATIONS

Operating Temperature: -65 to +300 F (Silicone)
-20 to +180 F (Neoprene)

Maximum Transmissibility at Resonance: 4.0 (Silicone)
10.0 (Neoprene)

Load Capacity: 1.3 – 5 Ounces
Axial-Radial Stiffness Ratio: 1:1
Part Weight: 0.03 oz.
Materials: Core and Base Plate: AL, 6061-T6,
Chromated per MIL-C-5541 Class 1A

Performance Characteristics

<table>
<thead>
<tr>
<th>Load Rating</th>
<th>Silicone Part Number</th>
<th>Neoprene Part Number</th>
<th>Dynamic Stiffness</th>
<th>N/mm</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ounces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>UAV3001-1</td>
<td>UAV2001-1</td>
<td>1.8</td>
<td>0.5</td>
<td>Red</td>
</tr>
<tr>
<td>1.6</td>
<td>UAV3001-2</td>
<td>UAV2001-2</td>
<td>2.4</td>
<td>0.6</td>
<td>Green</td>
</tr>
<tr>
<td>2.1</td>
<td>UAV3001-3</td>
<td>UAV2001-3</td>
<td>3.1</td>
<td>0.9</td>
<td>Blue</td>
</tr>
<tr>
<td>3</td>
<td>UAV3001-4</td>
<td>UAV2001-4</td>
<td>7.5</td>
<td>1.3</td>
<td>Light Grey</td>
</tr>
<tr>
<td>3.9</td>
<td>UAV3001-5</td>
<td>UAV2001-5</td>
<td>9.8</td>
<td>1.7</td>
<td>Tan</td>
</tr>
<tr>
<td>5</td>
<td>UAV3001-6</td>
<td>UAV2001-6</td>
<td>12.8</td>
<td>2.2</td>
<td>Black</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \frac{P_a}{P_r} \]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_a \): Rated load
- \(P_r \): Actual load

Transmissibility vs Frequency

![Graph showing transmissibility vs frequency](image-url)
HIGH DEFLECTION MOUNTS UAV3002

PRODUCT SPECIFICATIONS

Operating Temperature: -67 to +300 F (Silicone)
-20 to +180 F (Neoprene)
Maximum Transmissibility at Resonance: 4.0 (Silicone)
10.0 (Neoprene)

Load Capacity: 0.5 – 2 lb
Axial-Radial Stiffness Ratio: 1:1
Part Weight: 0.2 oz.
Materials: Core and Base Plate: 300 series CRES, passivated

Performance Characteristics

<table>
<thead>
<tr>
<th>Load Rating (lb)</th>
<th>Part No. Neoprene</th>
<th>Part No. Silicone</th>
<th>Axial Natural Frequency</th>
<th>Dynamic Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>UAV2002-3</td>
<td>UAV3002-3</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>0.75</td>
<td>UAV2002-5</td>
<td>UAV3002-5</td>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td>1.0</td>
<td>UAV2002-6</td>
<td>UAV3002-6</td>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td>1.5</td>
<td>UAV2002-7</td>
<td>UAV3002-7</td>
<td></td>
<td>32.0</td>
</tr>
<tr>
<td>2.0</td>
<td>UAV2002-8</td>
<td>UAV3002-8</td>
<td></td>
<td>48.0</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input
To correct for loads lower than rated load use:
F_n = F_n*P/P_r
Where:
F_n: Natural Frequency at actual load (Hz)
F_n*: Nominal Natural Frequency (Hz)
P_r: Rated load
P: Actual load

Transmissibility vs Frequency

* Neoprene
* Silicone
Solutions for shock, vibration, noise, and sealing challenges

HIGH DEFLECTION MOUNTS UAV3003

PRODUCT SPECIFICATIONS

Operating Temperature:
-67 to +300 F (Silicone)
-20 to +180 F (Neoprene)

Maximum Transmissibility at Resonance:
4.0 (Silicone)
10.0 (Neoprene)

Load Capacity: 0.5 – 3 lb

Axial-Radial Stiffness Ratio: 1:1.6

Part Weight: 0.2 oz.

Materials: Core and Base Plate: AL 6061-T6
Chem film per MIL-DTL-5541, Class 1A

Performance Characteristics

<table>
<thead>
<tr>
<th>Load Rating (lb)</th>
<th>Part No. Neoprene</th>
<th>Part No. Silicone</th>
<th>Axial Natural Frequency</th>
<th>Axial Dynamic Spring Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>UAV2003-B</td>
<td>UAV3003-B</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>UAV2003-1</td>
<td>UAV3003-1</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>1.5</td>
<td>UAV2003-1.5</td>
<td>UAV3003-1.5</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td>2.0</td>
<td>UAV2003-2</td>
<td>UAV3003-2</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td>3.0</td>
<td>UAV2003-3</td>
<td>UAV3003-3</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
</tbody>
</table>

*Fn at max rated load and .036 inch DA input

To correct for loads lower than rated load use:

\[F_n = F_{nn} \times \sqrt{P_r/P_a} \]

Where:

- \(F_n \): Natural Frequency at actual load (Hz)
- \(F_{nn} \): Nominal Natural Frequency (Hz)
- \(P_r \): Rated load
- \(P_a \): Actual load

Transmissibility vs Frequency