

CUP STYLE MOUNTS

Cup style mounts are compact, low profile, extremely rugged mounts suitable for vibration and shock applications in the most severe environments. Their fail-safe, all-attitude construction and a choice of elastomer materials makes them suitable for a wide range of uses. Equipment may be mounted from cup style mounts in any orientation (attitude) while achieving equal shock and vibration performance. Cup style mounts are ideal for applications on military ground vehicles, aircraft, aerospace and electronics racking systems.

Features:

- Fail-safe all attitude design
- Compact, lightweight Design
- 1:1 Axial to Radial spring rate
- Gradually increasing spring rate

Cup style mounts are available in two sizes:

- 701 size: 4 load ratings from 20 to 100 lb
- 702 size: 4 load ratings from 50 to 250 lb

Applicable Specifications MIL-STD-810 MIL-STD-167 MIL-E-5400 MIL-M-17185

VIB701

VIB702

VIB701 CUP MOUNTS

PRODUCT SPECIFICATIONS

Class SC3

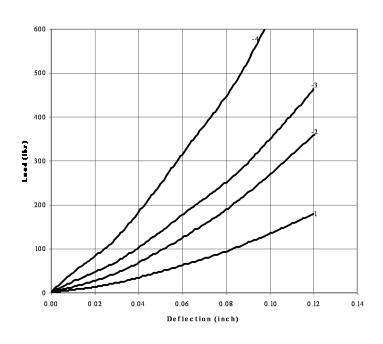
Operating Temperature: -40 to +180 F (Natural Rubber) -67 to +300 F (Silicone) -65 to +280 F (Universal) Maximum Transmissibility at Resonance: 10.0 (Natural Rubber) 4.0 (Silicone) 6.0 (Universal) Load Capacity: 20 – 100 lb Axial-Radial Stiffness Ratio: 1:1 Part Weight: 6 oz. (STL), 3 oz (AL) Materials: Pedestal & Cup: Steel per ASTM A1008, Zinc plated per ASTM B633 Type II, Class SC3 Core: Steel per ASTM A108, Zinc plated per ASTM B633 Type II,

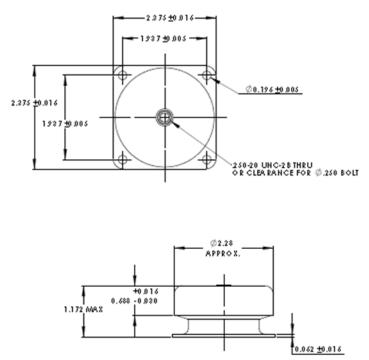
Load Rating Vibration	Load Rating Shock	Part No. Natural	Part No. Silicone	Part No. Universal	Axial Natural Frequency	Dynamic Spring Rate		• Threaded versions are indicated with a "T" (ex. VIB3701-1T)
lbs	lbs				Hz	lb/in	N/mm	• Aluminum versions are indicated with an
20	14	VIB1701-1	VIB3701-1	VIB5701-1		1276	226	"L"
30	24	VIB1701-2	VIB3701-2	VIB5701-2	25	1914	339	
70	38	VIB1701-3	VIB3701-3	VIB5701-3	25	4466	791	
100	60	VIB1701-4	VIB3701-4	VIB5701-4		6380	1131	

*Fn at max rated load and .036 inch DA input

To correct for loads lower than rated load use:

 $F_n = F_{nn} * \sqrt{P_r/P_a}$


Where:


F_n: Natural Frequency at actual load (Hz)

F_{nn}: Nominal Natural Frequency (Hz)

 P_r : Rated load

P_a: Actual load

VIB702 CUP MOUNTS

PRODUCT SPECIFICATIONS

Operating Temperature: -40 to +180 F (Natural Rubber) -67 to +300 F (Silicone) -65 to +280 F (Universal) Maximum Transmissibility at Resonance: 10.0 (Natural Rubber) 4.0 (Silicone) 6.0 (Universal)

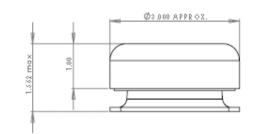
Load Capacity: 50 – 250 lb Axial-Radial Stiffness Ratio: 1:1 Part Weight: 1 lb Materials: Pedestal & Cup: Steel per ASTM A1008, Zinc plated per ASTM B633 Type II, Class SC3 Core: Steel per ASTM A108, Zinc plated per ASTM B633 Type II, Class SC3

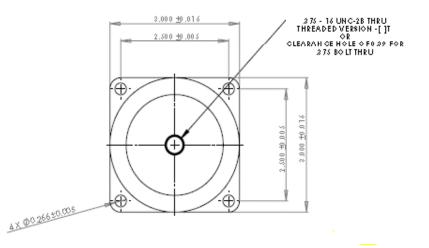
Load Rating Vibration	Load Rating Shock	Part No. Natural	Part No. Silicone	Part No. Universal	Natural Frequency (Vibration)	Dynamic Spring Rate		• Threaded versions are indicated with a "T" (ex. VIB3701-1T)
lbs	lbs				Hz	lb/in	N/mm	• Aluminum versions are indicated with
50	30	VIB1702-1	VIB3702-1	VIB5702-1	22	2470	438	an "L" (ex. VIB3701-1TL)
100	50	VIB1702-2	VIB3702-2	VIB5702-2		4940	876	
150	80	VIB1702-3	VIB3702-3	VIB5702-3		7410	1314	
250	105	VIB1702-4	VIB3702-4	VIB5702-4		12350	2190	

*Fn at max rated load and .036 inch DA input

To correct for loads lower than rated load use:

 $\mathbf{F}_{n} = \mathbf{F}_{nn} * \sqrt{\mathbf{P}_{r}} / \mathbf{P}_{a}$


Where:


F_n: Natural Frequency at actual load (Hz)

F_{nn}: Nominal Natural Frequency (Hz)

P_r: Rated load

P_a: Actual load

