

Low-Profile High-Deflection Mounts

Low-profile, high-deflection mounts are general purpose isolators for applications in ground vehicles or transit cases where high amplitude vibration and shock loading is expected. Low-profile, high-deflection mounts are resistant to a wide range of environmental conditions and are ideally suited for the isolation of electronic equipment in off-road and heavy duty service.

Features:

- Lightweight, low-profile design
- · Efficiently isolates vibration in all directions
- 2:1 Axial to Radial spring rate
- Survives 30G 11ms ½ sine shock input at rated load

Low-profile, high-deflection mounts are available in three sizes:

- 2805 size: 5 load ratings from 2.5 to 10 lb
- 2806 size: 3 load ratings from 2 to 10 lb

Applicable Military Specifications:

MIL-STD-810

VIB2806

VIB2805

Solutions for shock, vibration, noise, and sealing challenges

VIB2805

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +180 F

Maximum Transmissibility at Resonance: 10.0

Load Capacity: 2.5 – 10 lb Axial-Radial Stiffness Ratio: 2:1

Part Weight: 0.2 oz.

Materials:

Core and Base Plate: Aluminum alloy 6061-T6

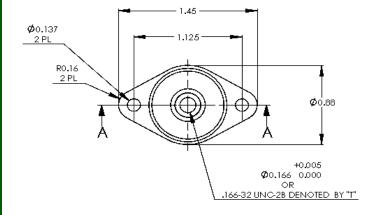
Elastomer: Neoprene

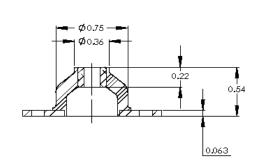
Performance Characteristics

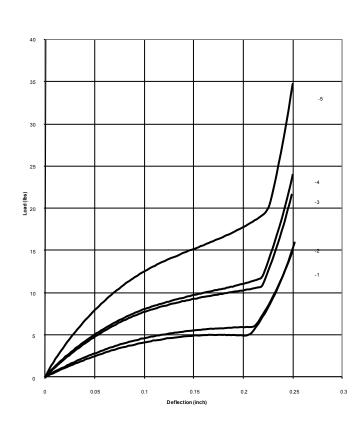
Part No.	Color Code	Max. Static Load (Axial)	Max. Static Load (Radial)	Axial Natural Frequency	Dynamic Axial Spring Rate		Dynamic Radial Spring Rate	
		Lbs	Lbs	Hz	lb/in	N/mm	lb/in	N/mm
VIB2805-1	Blue	2.50	1.40	14	50	9	25	5
VIB2805-2	Red	3.75	1.90		75	14	38	7
VIB2805-3	Green	4.25	2.75	16	111	20	55	10
VIB2805-4	Yellow	6.50	3.75		170	31	85	15
VIB2805-5	White	10.0	6.25		261	47	130	23

*Fn at max rated load and .036 inch DA input

To correct for loads lower than rated load use:


 $F_n = F_{nn} * \sqrt{P_r/P_a}$


Where:


F_n: Natural Frequency at actual load (Hz)

F_{nn}: Nominal Natural Frequency (Hz)

P_r: Rated load

Solutions for shock, vibration, noise, and sealing challenges

VIB2806

PRODUCT SPECIFICATIONS

Operating Temperature: -20 to +180 F Maximum Transmissibility at Resonance: 10.0

Load Capacity: 2 - 10 lb

Axial-Radial Stiffness Ratio: 2:1

Part Weight: 0.5 oz.

Materials:

Core and Base Plate: Aluminum alloy 6061-T6

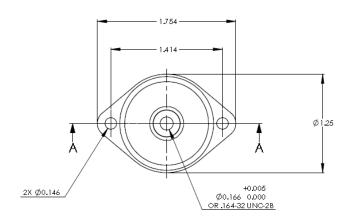
Elastomer: Neoprene

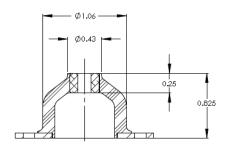
Performance Characteristics

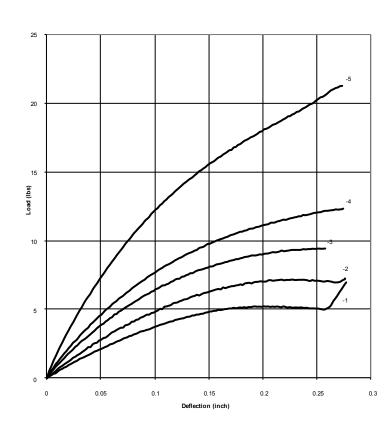
Part No.	Color Code	Max. Static Load (Axial)	Max. Static Load (Radial)	Axial Natural Frequency	Dynamic Axial Spring Rate		Dynamic Radial Spring Rate	
		Lbs	Lbs	Hz	lb/in	N/mm	lb/in	N/mm
VIB2806-1	Blue	2.0	0.75	12	29	5	15	3
VIB2806-2	Red	3.0	1.50		44	8	22	4
VIB2806-3	Green	5.0	2.25		73	13	37	7
VIB2806-4	Yellow	7.5	4.0		110	20	55	10
VIB2806-5	White	10.0	5.5		147	27	74	14

*Fn at max rated load and .036 inch DA input

To correct for loads lower than rated load use:


 $F_n = F_{nn} * \sqrt{P_r/P_a}$


Where:


F_n: Natural Frequency at actual load (Hz)

F_{nn}: Nominal Natural Frequency (Hz)

Pr: Rated load

