

MOLDING PROCESSES

Did you know we have a variety of MOLDING PROCESSES to meet all your application specific design and cost requirements?

Compression Molding

An individual preform is placed in or near a cavity. The tool plates are clamped together, forcing the elastomer to fill the cavity. The elastomer is vulcanized and removed from the tool.

Transfer Molding

A slab preform is placed into a well in the tool above the cavity. The tool plates are clamped together, forcing the elastomer to flow through sprues and into the cavity. The elastomer is vulcanized and removed from the tool.

- Cost Effective Tooling
- Maximized Cavity Count
- Economical Process for Medium Precision

- Cost Effective Tooling
- High Cavity Count
- Economical Process for Medium to High Precision Components
- Capable of Producing Overmolded
 Components

Injection Molding

A continuous strip preform is drawn into the barrel of the press by a screw. The tool plates are clamped together, then the screw forces the elastomer to flow through a runner system and into the cavity. The elastomer is vulcanized and removed from the tool.

Liquid Injection Molding

A two-part component is pushed into the barrel of the press by plungers and mixed. The tool plates are clamped together, then a pump forces the elastomer to flow through a runner system and into the cavity. The elastomer is vulcanized and removed from the tool

- Reduced Cycle Time
- Flashless Tooling
- Economical Process for High Volumes of Medium to High Precision Components
- Capable of Producing Overmolded
 Components
- Specialized Products
- Shortest Cycle Time
- Flashless Tooling
- Economical Process for High Volumes, High Precision Components
- Capable of Producing Overmolded
 Components
- Least Material Waste

MOLDING PROCESSES

We can mold in a variety of Elastomers to meet any application requirements

ELASTOMERS	ASTM
Natural Rubber	NR
Polyisoprene	IR
Butadiene	BR
Styrene Butadiene	SBR
Butyl	IIR
Ethylene Propylene Diene	EPDM
Chloroprene	CR
Ethylene Acrylic	AEM
Polyacrylate	ACM
Acrylonitrile Butadiene	NBR
Hydrogenated Nitrile	HNBR
Epichlorohydrin	ECO
Silicone	VMQ
Fluorosilicone	FVMQ
Fluorocarbon	FKM
Liquid Silicone Rubber	LSR